
1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 1/10

Understanding the Command Line

C:\> type Filename.txt <Enter>

C:\> cd \home <Enter>

C:\> copy source.txt target.txt <Enter>

C:\> del filename.ext <Enter>

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 2/10

In [2]:

In [2]:

In [5]:

In [6]:

Hello, World!

argc is 1

/tmp/tmp_7m793ao.out

argv[0] /tmp/tmp1h3827j2.out

#include <stdio.h>

int main(void)
{
 printf("Hello, world\n";
}

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("argc is %d\n", argc);
}

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("%s\n", argv[0]);
}

#include <stdio.h>

int main(int argc, char *argv[])
{
 for (int i = 0; i < argc; ++i)
 printf("argv[%d] %s\n", i, argv[i]);
}

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 3/10

Using **argv to Access Command-Line
Arguments

In [7]:

In [8]:

/tmp/tmpickexxfm.out

/tmp/tmpfipnsdkm.out

#include <stdio.h>

int main(int argc, char **argv)
{
 for (int i = 0; i < argc; ++i)
 printf("%s\n", *argv);
}

#include <stdio.h>

int main(int argc, char **argv)
{
 while (*argv)
 printf("%s\n", *argv++);
}

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 4/10

There's Nothing Special About the Names argc
and argv

In [10]:

Displaying the File Specified in the Command
Line

a[0] /tmp/tmpryrxla46.out

#include <stdio.h>

int main(int a, char *b[])
{
 for (int i = 0; i < a; ++i)
 printf("a[%d] %s\n", i, b[i]);
}

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 5/10

In [12]:

Deleting the File Specified in the Command
Line

Syntax: No file specified

#include <stdio.h>

int main(int argc, char *argv[])
{
 if (argc < 2)
 printf("Syntax: No file specified\n");
 else
 {
 FILE *fp = fopen(argv[1], "r");

 if (fp == NULL)
 printf("Error opening %s\n", argv[1]);
 else
 {
 char buffer[256];

 while (fgets(buffer, sizeof(buffer), fp))
 fputs(buffer, stdout);

 fclose(fp);
 }
 }
}

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 6/10

In [13]:

Displaying the First n Lines of the File Specified
in the Command Line

Syntax: No file specified

#include <stdio.h>

int main(int argc, char *argv[])
{
 if (argc < 2)
 printf("Syntax: No file specified\n");
 else if (remove(argv[1]) != 0)
 printf("Error deleting %s\n", argv[1]);
 else
 printf("%s deleted\n", argv[1]);
}

Syntax
 first filename.ext 5 <Enter>

 first filename.ext <Enter>

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 7/10

In [24]:

Syntax: first filename [n]

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
 {
 char line[255];
 int i, j;

 FILE *fp;

 if (argc < 3)
 printf("Syntax: first filename [n]");
 else if ((fp = fopen(argv[1], "r")) == NULL)
 printf("Error opening %s\n", argv[1]);
 else
 {
 j = atoi(argv[2]);

 for (i=0; i < j; i++)
 {
 if (fgets(line, sizeof(line), stdin) == NULL)
 break;
 fputs(line, stdout);
 }
 fclose(fp);
 }
 }

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 8/10

Renaming the File Specified in the Command
Line

In [26]:

Understanding main's Return Value

Syntax: rename filename newname

Syntax
 Rename oldname.ext newname.ext

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
 {
 if (argc < 3)
 printf("Syntax: rename filename newname\n");
 else if (rename(argv[1], argv[2]) != 0)
 printf("Error renaming %s\n", argv[1]);
 else
 printf("File renamed\n");
}

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 9/10

In [29]:

In [30]:

In [31]:

[C kernel] Executable exited with code 255

Syntax: rename filename newname

[C kernel] Executable exited with code 1

#include <stdio.h>

int main(void)
{
 return(0);
}

#include <stdio.h>

int main(void)
{
 return(255);
}

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
 {
 if (argc < 3)
 {
 printf("Syntax: rename filename newname\n");
 return(1);
 }
 else if (rename(argv[1], argv[2]) != 0)
 {
 printf("Error renaming %s\n", argv[1]);
 return(2);
 }
 else
 {
 printf("File renamed\n");
 return(0);
 }
}

1/31/2021 C Programming-Command-Line Processing

localhost:8888/notebooks/C Programming-Command-Line Processing.ipynb# 10/10

